## In Class Exercise for Chapter 14 – Chemical Kinetics

1. Initial rate data at 25°C are listed in the table for the reaction:

| $NH_{4(aq)}^{+} + NO_{2(aq)}^{-} \rightarrow N_{2(g)} + 2H_2O_{(l)}$ |                                    |                                  |                        |
|----------------------------------------------------------------------|------------------------------------|----------------------------------|------------------------|
| Experiment                                                           | $\left[ NH_{4(aq)}^{+} ight] _{0}$ | $\left[NO_{2(aq)}^{-} ight]_{0}$ | Initial rate (mol/L·s) |
| 1                                                                    | 0.24                               | 0.10                             | 7.2 x 10 <sup>-6</sup> |
| 2                                                                    | 0.12                               | 0.10                             | 3.6 x 10 <sup>-6</sup> |
| 3                                                                    | 0.12                               | 0.15                             | 5.4 x 10 <sup>-6</sup> |

(a) What is the rate law?

$$rate = k \left[ NH_{4}^{+} \right]^{m} \left[ NO_{2}^{-} \right]^{n}$$

$$\frac{rate_{1}}{rate_{2}} = \frac{7.2 \times 10^{-6} \frac{mol}{L \cdot s}}{3.6 \times 10^{-6} \frac{mol}{L \cdot s}} = \frac{2}{1} = \frac{k \left( 0.24 \frac{mol}{L} \right)^{m} \left( 0.10 \frac{mol}{L} \right)^{n}}{k \left( 0.12 \frac{mol}{L} \right)^{m} \left( 0.10 \frac{mol}{L} \right)^{n}} = \left( \frac{2}{1} \right)^{m} \rightarrow m = 1$$

$$\frac{rate_{3}}{rate_{2}} = \frac{3.6 \times 10^{-6} \frac{mol}{L \cdot s}}{5.4 \times 10^{-6} \frac{mol}{L \cdot s}} = \frac{2}{3} = \frac{k \left( 0.12 \frac{mol}{L} \right)^{m} \left( 0.10 \frac{mol}{L} \right)^{n}}{k \left( 0.12 \frac{mol}{L} \right)^{m} \left( 0.15 \frac{mol}{L} \right)^{n}} = \left( \frac{2}{3} \right)^{m} \rightarrow m = 1$$

$$rate = k \left[ NH_{4}^{+} \right] \left[ NO_{2}^{-} \right]$$

- (b) What is the value of the rate constant?  $7.2 \times 10^{-6} \frac{mol}{L \cdot s} = k \left( 0.24 \frac{mol}{L} \right) \left( 0.10 \frac{mol}{L} \right) \rightarrow k = 3.0 \times 10^{-4} \frac{L}{mol \cdot s}$
- (c) What is the reaction rate when the concentrations are  $\begin{bmatrix} NH_4^+ \end{bmatrix} = 0.39M \& \begin{bmatrix} NO_2^- \end{bmatrix} = 0.052M$   $rate = 3.0 \times 10^{-4} \frac{L}{mol \cdot s} \left( 0.39 \frac{mol}{L} \right) \left( 0.052 \frac{mol}{L} \right) = 6.1 \times 10^{-6} \frac{mol}{L \cdot s}$

2. The rearrangement of methyl isonitrile (CH<sub>3</sub>NC) to acetonitrile (CH<sub>3</sub>CN) is a first-order reaction and has a rate constant of  $5.11 \times 10^{-5} \text{ s}^{-1}$  at 472 K.

$$CH_3 - N \equiv C \rightarrow CH_3 - C \equiv N$$

If the initial concentration of CH<sub>3</sub>NC is 0.0340 M:

(a) What is the molarity of CH<sub>3</sub>NC after 2 hours?

$$rate = k [CH_{3}NC] = 5.11 \times 10^{-5} s^{-1} [CH_{3}NC] \quad t = 2hr \times \frac{3600 s}{1 hr} = 7200 s$$
$$\ln [CH_{3}NC] = -kt + \ln [CH_{3}NC]_{0} \rightarrow [CH_{3}NC] = e^{-kt + \ln [CH_{3}NC]_{0}} = e^{-kt} [CH_{3}NC]_{0}$$
$$[CH_{3}NC] = e^{-7200 s \times 5.11 \times 10^{-5} s^{-1}} (0.0340 \frac{mol}{L}) = 0.0235 \frac{mol}{L}$$

. . . .

(b) How many minutes does it take for the CH<sub>3</sub>NC concentration to drop to 0.0300 M?

$$\ln \left[ CH_{3}NC \right] = -kt + \ln \left[ CH_{3}NC \right]_{0} \rightarrow t = -\ln \left( \frac{\left[ CH_{3}NC \right]_{0}}{\left[ CH_{3}NC \right]_{0}} \right) / k$$
$$t = -\ln \left( \frac{0.0300 \frac{mol}{L}}{0.0340 \frac{mol}{L}} \right) / 5.11 \times 10^{-5} s^{-1} \times \frac{1 \min}{60 s} = 40.8 \min$$

(c) How many minutes does it take for 20% of the CH<sub>3</sub>NC to react?

$$t = -\ln\left(\frac{0.8*0.0340\frac{mol}{L}}{0.0340\frac{mol}{L}}\right) / 5.11 \times 10^{-5} \, s^{-1} \times \frac{1\,\mathrm{min}}{60\,\mathrm{s}} = 72.8\,\mathrm{min}$$

(d) What is the half life (in minutes) of the reaction?

$$t_{\frac{1}{2}} = 0.693 / k = 0.693 / 5.11 \times 10^{-5} s^{-1} \times \frac{1 \min}{60 s} = 226 \min$$

3. Hydrogen iodide decomposes slowly to H<sub>2</sub> and I<sub>2</sub> at 600 K. The reaction is second in HI and the rate constant is 9.7 x 10<sup>-6</sup> M<sup>-1</sup> s<sup>-1</sup>. If the initial concentration of HI is 0.100 M:
(a) What is its molarity after a reaction time of 6.00 days?

 $\frac{1}{[HI]} = kt + \frac{1}{[HI]_0} \rightarrow [HI] = \left(kt + \frac{1}{[HI]_0}\right)^{-1}$  $[HI] = \left(9.7 \times 10^{-6} \frac{L}{mol \cdot s} \times \frac{60 \text{ s}}{1 \text{ min}} \times \frac{60 \text{ min}}{\text{hr}} \times \frac{24 \text{ hr}}{1 \text{ day}} \times 6 \text{ days} + \frac{1}{0.100 \frac{mol}{L}}\right)^{-1} = 0.0665 \frac{mol}{L}$ 

(b) What is the time (in days) when the HI concentration reaches a value of  $0.020 \text{ M}^2$ 

$$\frac{1}{[HI]} = kt + \frac{1}{[HI]_0} \to t = \frac{1}{k} \left( \frac{1}{[HI]} - \frac{1}{[HI]_0} \right)$$

$$t = \frac{1}{9.7 \times 10^{-6} \frac{L}{mol \cdot s}} \times \frac{1 \min}{60 \ s} \times \frac{hr}{60 \min} \times \frac{1 \text{ day}}{24 \text{ hr}} \left( \frac{1}{0.020 \frac{mol}{L}} - \frac{1}{0.100 \frac{mol}{L}} \right) = 47.7 \text{ days}$$
(c) What is the half-life of the reaction?
$$t_{\frac{1}{2}} = \frac{1}{k[HI]_0} = \frac{1}{9.7 \times 10^{-6} \frac{L}{mol \cdot s} \left( 0.100 \frac{mol}{L} \right)} \times \frac{1 \min}{60 \ s} \times \frac{hr}{60 \min} \times \frac{1 \text{ day}}{24 \text{ hr}} = 11.9 \text{ days}$$
(d) How many days does it take for the concentration of HI to drop from 0.0250 M to 0.0125 M?
$$t = \frac{1}{k[HI]_0} \times \frac{1 \min}{k} \times \frac{hr}{k} \times \frac{1 \text{ day}}{k} \left( \frac{1}{k} - \frac{1}{k} \right) = 47.7 \text{ days}$$

$$t = \frac{1}{9.7 \times 10^{-6} \frac{L}{mol \cdot s}} \times \frac{1}{60 \text{ s}} \times \frac{1}{60 \text{ min}} \times \frac{1}{24 \text{ hr}} \left( \frac{1}{0.0125 \frac{mol}{L}} - \frac{1}{0.0250 \frac{mol}{L}} \right) = 47.7 \text{ days}$$
$$t_{\frac{1}{2}} = \frac{1}{k[HI]_{0}} = \frac{1}{9.7 \times 10^{-6} \frac{L}{mol \cdot s} \left( 0.0250 \frac{mol}{L} \right)} \times \frac{1}{60 \text{ s}} \times \frac{1}{60 \text{ min}} \times \frac{1}{24 \text{ hr}} = 47.7 \text{ days}$$

4. The following mechanism has been proposed for the reaction of nitric oxide & chlorine:  $step 1: NO_{(g)} + Cl_{2(g)} \rightarrow NOCl_{2(g)}$ 

step 2: 
$$NOCl_{2(g)} + NO_{(g)} \rightarrow 2NOCl_{(g)}$$

(a) What is the overall reaction? step 1:  $NO_{(g)} + Cl_{2(g)} \rightarrow NOCl_{2(g)}$   $\underline{step 2: NOCl_{2(g)} + NO_{(g)} \rightarrow 2NOCl_{(g)}}$  $\underline{2NO_{(g)} + Cl_{2(g)} \rightarrow 2NOCl_{(g)}}$ 

(b) Identify any reaction intermediates.  $NOCl_{2(g)}$ 

(c) What is the molecularity of each elementary step? Both are bimolecular

(d) What is the rate law if the first step is slow and the second is fast?  $rate = k[NO][Cl_2]$ 

5. Values of  $E_a = 183 \text{ kJ} / \text{mol}$  and  $\Delta E = -9 \text{ kJ} / \text{mol}$  have been measured for the reaction:

$$2HI_{(g)} \to H_{2(g)} + I_{2(g)}$$

Sketch a potential energy profile for this reaction that shows the potential energy of the reactants, products, the transition state,  $E_a$  and  $\Delta E$ . What is the  $E_a$  for the reverse reaction?



**Reaction Coordinate** 

$$E_{a,reverse} = (183 + 9)kJ = 192kJ$$

6. The following mechanism has been proposed for the decomposition of dinitrogen pentaoxide, which has an experimental rate law and mechanism as shown below.

$$rate = -\frac{\Delta [N_2 O_5]}{\Delta t} = k [N_2 O_5]$$
$$N_2 O_{5(g)} \underbrace{\stackrel{k_1}{\overleftarrow{k_{-1}}} NO_{2(g)} + NO_{3(g)}}_{t} \qquad fast$$

$$NO_{2(g)} + NO_{3(g)} \xrightarrow{k_2} NO_{(g)} + NO_{2(g)} + O_{2(g)}$$
 slow

$$NO_{(g)} + NO_{3(g)} \xrightarrow{k_3} 2NO_{2(g)}$$
 fast

(a.) Write a balanced equation for the overall reaction.

$$\begin{split} &N_2 O_{5(g)} \underbrace{\xrightarrow{k_1}}_{k_{-1}} NO_{2(g)} + NO_{3(g)} & fast \\ &NO_{2(g)} + NO_{3(g)} \underbrace{\xrightarrow{k_2}}_{NO_{(g)}} + NO_{2(g)} + NO_{2(g)} + O_{2(g)} & slow \\ & \underbrace{NO_{(g)} + NO_{3(g)} \xrightarrow{k_3}}_{2N_2 O_{5(g)}} + NO_{2(g)} + NO_{3(g)} + NO_{3(g)} \rightarrow 2NO_{2(g)} + 2NO_{3(g)} + NO_{(g)} + NO_{2(g)} + O_{2(g)} + 2NO_{2(g)} \\ & 2N_2 O_{5(g)} + NO_{2(g)} + 2NO_{3(g)} + NO_{(g)} \rightarrow 5NO_{2(g)} + 2NO_{3(g)} + NO_{(g)} + O_{2(g)} \\ & 2N_2 O_{5(g)} + NO_{2(g)} + 2NO_{3(g)} + NO_{(g)} \rightarrow 4 \not > NO_{2(g)} + 2NO_{3(g)} + NO_{(g)} + O_{2(g)} \\ & 2N_2 O_{5(g)} + NO_{2(g)} + 2NO_{3(g)} + NO_{(g)} \rightarrow 4 \not > NO_{2(g)} + 2NO_{3(g)} + NO_{(g)} + O_{2(g)} \\ & 2N_2 O_{5(g)} \rightarrow 4NO_{2(g)} + O_{2(g)} \\ \hline \\ & 2N_2 O_{5(g)} \rightarrow 4NO_{2(g)} + O_{2(g)} \\ \hline \end{aligned}$$

- (b.) Are there any intermediates and if so what are they? NO<sub>3</sub> and NO
- (c.) Verify the rate law given above.

$$k_{1}[N_{2}O_{5}] = k_{-1}[NO_{2}][NO_{3}]$$
  
rate =  $k_{2}[NO_{2}][NO_{3}] = k_{2}\frac{k_{1}}{k_{-1}}[N_{2}O_{5}] = K[N_{2}O_{5}]$